Exascale Computing Without Templates

Karl Rupp, Richard Mills, Barry Smith, Matthew Knepley, Jed Brown

S. DEPARTMENT OF

JENERGY

Argonne National Laboratory

Argonneé

NATIONAL LABORATORY

DOE COE Performance Portability Meeting, Denver
August 22-24, 2017

Providing Context
.

Exascale Computing without Threads*

A White Paper Submitted to the
DOE High Performance Computing Operational Review (HPCOR)
on Scientific Software Architecture for Portability and Performance
August 2015

Matthew G. Knepley', Jed Brown?, Barry Smith?, Karl Rupp®, and Mark Adams*

'Rice University, *Argonne National Laboratory, *TU Wien, *Lawrence Berkeley National Laboratory
knepleyCrice.edu, [jedbrown,bsmith]@mcs.anl.gov, rupp@iue.tuvien.ac.at, mfadams@lbl.gov
Abstract

We provide technical details on why we feel the use of threads does not offer any fundamental performance
advantage over using processes for high-performance computing and hence why we plan to extend PETSc to

exascale (on emerging architectures) using node-aware MPT techniques, including neighborhood collectives and
portable shared memory within a node, instead of threads.

https://www.orau.gov/hpcor2015/whitepapers/Exascale_Computing.without_Threads-Barry_-Smith.pdf

PETSc Developers Care About Recent Developments

After careful evaluation: Favor MPI 3.0 (and later) over threads
Find the best long-term solutions for our users
Consider best solutions for large-scale applications, not just toy-apps

Providing Context

Physics
Material / Radiation Chemical
Solid Mechanics Transport J Reactions J

i MOQSE

1ibMesh

Mesh J Finite Element Method J Input / Output J

Thermal / Fluids J

Solvers Interface

PETSc SNES

http://mooseframework.org/static/media/wiki/images/229/b6lcdbcle8be7ldae37adc31a688d209/moose-arch.png

Providing Context
.
Our Attempts in C++ Library Development

Sieve: Several years of C++ mesh management attempts in PETSc
ViennaGrid 2.x: Heavily templated C++ mesh management library
ViennaCL: Dense and sparse linear algebra and solvers for multi- and many-core architectures

Providing Context
.
Our Attempts in C++ Library Development

Sieve: Several years of C++ mesh management attempts in PETSc
ViennaGrid 2.x: Heavily templated C++ mesh management library
ViennaCL: Dense and sparse linear algebra and solvers for multi- and many-core architectures

Aftermath

Sieve: Replaced by DMPlex (written in C) 104Sequentlal build times for the ViennaCL test suite

ViennaGrid: Version 3.0 provides C-ABI o S A8
, - . o S
ViennaCL: Rewrite in C likely S S -
3 R
510
& S
g O q/)\‘.b
F 2 0\' p =
\.0/
10!
2010 2011 2012 2013 2014 2015 2016

Year

Disadvantages of C++ Templates
L

Static Dispatch

Architecture-specific information only available at run time
“Change code and recompile” not acceptable advice

Disadvantages of C++ Templates

Static Dispatch THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

Architecture-specific information only available at run time “MY CODE'S, COMPILING."

“Change code and recompile” not acceptable advice

HEY! GET BACK,
O UORK‘

Dealing with Compilation Errors

Type names pollute compiler output
Replicated across interfaces

CRTP may result in type length explosion
Default arguments become visible

https://xked.com/303/

Type Length
std::vector<int> 38
std::vector<std::vector<int> > 109
std::vector<std::vector<std::vector<int> > > 251
std::vector<std::vector<std::vector<std::vector<int> > > > 539

Disadvantages of C++ Templates

Follow tgceec
- — -

The Grand C++ Error Explosion Competition

Big errors for small source

POSTS LIKES ARCHIVE

Results of tgceec 2015

The deadliine for the Grand C-++ Error Explosion Competition has
passed. We would like to thank all those who participated.

However, we received only a very small number of entries. Because of
this we have decided to cancel the competition. Due to this lack of
interest we suspect that the competition will not be run again next year.

https://tgceec.tumblr.com/

Disadvantages of C++ Templates
L

Scope Limitations

Template metaprogramming lacks state
Optimizations across multiple code lines difficult or impossible

Disadvantages of C++ Templates
L

Scope Limitations

Template metaprogramming lacks state
Optimizations across multiple code lines difficult or impossible

Example
Consider vector updates in pipelined CG method:

Xi < Xi—1 + api—1
Vi < ri—1 — Qy;

pi <+ ri + Bpi—1

Reuse of p;—; and r,_; easy with for-loops, but hard with expression templates

Disadvantages of C++ Templates
L

Complicates Debugging

Stack traces get longer names and deeper
Setting good breakpoints may become harder

Disadvantages of C++ Templates
L

Complicates Debugging

Stack traces get longer names and deeper
Setting good breakpoints may become harder

Lack of a Stable ABI

Obiject files from different compilers generally incompatible
Name mangling makes use outside C++ land almost impossible

Disadvantages of C++ Templates
L

Complicates Debugging

Stack traces get longer names and deeper
Setting good breakpoints may become harder

Lack of a Stable ABI

Obiject files from different compilers generally incompatible
Name mangling makes use outside C++ land almost impossible

High Entry Bar

Number of potential contributors inversely proportional to code sophistication
Domain scientists have limited resources for C++ templates

A Path Forward

51 loop around micro-kernel

ne No
R S
c += A 5

Manage Complexity

Good interface design (N
Refactor code when needed d
Hand-optimize small kernels only (cf. BLIS methodology)

(———— 2'loop around micro-kernel

L C A B,

(TT1TID-~ Bl

1loop around micro-kernel

|
+= ke

micro-kernel
3 main memory
B GBeache u mmm g
O L2 cache 4=
B L1 cache 1
. registers

[F. Van Zee, T. Smith, ACM TOMS 2017]

A Path Forward
e

51 loop around micro-kernel

Manage Complexity G = 5
Good interface design {
Refactor code when needed g += |
Hand-optimize small kernels only (cf. BLIS methodology) R

o Jim meifa]
= L] ||Packa—4

Development Implications [y Tiemomsmaotens |

} | VAT 2] E
Adopt professional software development practices += E%%%%
Develop, maintain, and evolve different datastructures ... 5 ioapsrund i eme
ma{
... and code paths ﬁ . I}
Use clear and easy-to-understand datastructures
Fallacy: “Writing” an application only once in its final form Spe . nmmm I

[F. Van Zee, T. Smith, ACM TOMS 2017]

A Path Forward
e

Spending Development Resources

Reuse existing libraries — reinventing the wheel is not productive!
Focus on domain- and application-specific aspects
Obtain expertise and resources for continuous code evolution

A Path Forward
e

Spending Development Resources

Reuse existing libraries — reinventing the wheel is not productive!
Focus on domain- and application-specific aspects
Obtain expertise and resources for continuous code evolution

Required Incentives

Reward contributions to existing projects
Pair research funding with software development funding
Establish software development career tracks

A Path Forward
I

Is Performance Portability Just a Software Productivity Aspect?

COMPUTATIONAL SCIENCE AND ENGINEERING
SOFTWARE SUSTAINABILITY AND PRODUCTIVITY
(CSESSP) CHALLENGES WORKSHOP REPORT

CSESSP
October 15-16, 2015

WASHINGTON, DC USA

CSESSP WORKSHOP REPORT GROUP NITRD POINT OF CONTACT

” https://www.nitrd.gov/PUBS/CSESSPWorkshopReport .pdf

Summary

Long-Term Problems of Heavy C++ Templates Use

Template metaprogramming is a leaky abstraction
Excessive type names slow down all stages of Compile-Run-Debug-cycle
Templates operate at compile time - architecture ultimately known at run time

A Path Forward

Adopt professional software development practices

Be prepared to develop different datastructures and code paths
Write clear, readable code using simple datastructures

Evolve and refactor datastructures, kernels, and interfaces over time
(cf. software productivity discussions)

